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SUMMARY

The present paper describes a technique to generate three-dimensional surtace grids
suitable for calculating shape factors for thermal radiative heat transfer. The surface under
consideration is approximated by finite triangular elements generated in a special manner.
The grid is generated by dividing the surface into a two-dimensional array of nodes. Each
node is defined by its coordinates. Each set of four adjacent nodes is used to construct two
triangular elements. Each triangular element is characterized by the vector representation of
its vertices. Vector algebra is utilized to calculate all desired geometric properties of gnd
elements. The properties are used to determine the shape factors between the element and an
area element in space. The generated gnid can be graphically displayed using any software
with 3-dimensional features. In the present paper, DISSPLA was used to view the grids

INTRODUCTION

The thermal radiation shape or configuration factor between two surfaces has been the
subject of many investigations. The determination of this factor is important in thermal
radiation heat transter applications which are encountered in a wide variety of engineering
systems. Analytical derivation of shape factors, even for simple configurations, 1s very
complex. Therefore, numerous tables have been generated and tabulated in the hterature tor
basic geometries [e.g.. see Hamilton and Morgan (reference 1) and Howell (reference 2.
Despite the existence of these tables, different configurations are often needed so that 1t ix not
practical to tabulate all possible geometries. Furthermore, cases involving complex geometries
may result in analytically non-integrable expressions. Therefore, numerical methods become
more attractive to use in such cases, especially when incorporated in a computer code which
handles the heat transfer calculations.

This paper describes a grid generation technique which was developed to aid in the
numerical calculation of the shape factor between an area element and an arbitrary three-
Jdimensional surface in space. In the present scheme. a given three-dimensional area 1s
discretized into finite triangular elements (FTE) using the surface nodes in a special manner.
Each triangular element is characterized by the vector representation of its vertices. The
differential shape factor between a ditferential area element whose location and orientation
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are fixed and each triangular element is calculated using the geometric properties of the tri-
angle. The shape factor between an area element and the entire surface is obtained by sum-
mation of the differential shape factors for all triangles. This method is applicable to general-
ized three-dimensional areas without restrictions. However, blockage or shadowing effects
due to other parts of the surface must be taken into account when the shape factor calcula-
tions are performed. Grids for selected sample cases were generated and the corresponding
numerically calculated shape factors were compared with the analytical solutions in order to
validate this technique.

SHAPE FACTOR EVALUATION

The shape factor between two differential planer area elements dA| and dAj, shown in
Figure 1, is defined (e.g., reference 1) as
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where Fj41.442 is the shape factor representing the fraction of the energy leaving the area
element dA) that is arriving at the area element dA; 01 and 0; are the angles from normal for

the surfaces 1 and 2, respectively; and S is the distance between the two surfaces.

In practical applications, it is usually desired to determine the radiant heat transter
between a planer differential area and a finite surface. Thus, the corresponding shape factor,
F4a1-42. is obtained by integrating Equation 1 over A; as follows:
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Equations 1 and 2 are the basic equations governing the view of one surface relative to
another in space. Equation 2 can be integrated to define an overall shape factor between two
finite areas as outlined by Siegel and Howell (reference 3). The mathematical treatment of
such equations is tedious. In addition, Equation 2 is integrable only for relatively simple
geometries. Although numerous tables were generated and published in the literature (e.g.,
references 1 and 2), different geometries may be encountered in practical applications. Thus,
approximate or numerical methods must be used in these cases.

F

A numerical integration of Equation 2 can be achieved for an arbitrary surface, A, by
dividing the surface into discrete elements. An elemental shape factor for an element, AAy, is
expressed by replacing Equation 1 by its equivalent in finite form as
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Then Equation 2 can be evaluated by the following summation:

): AA (4)
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where 7 is the total number of elements generated and i is an index representing the ith
element. A special grid generation method has been developed to construct a mesh of finite
triangular elements (FTE). The elements are used to calculate the shape factor expressed in
Equation 4. Details of the calculations of the terms in Equation 4 are beyond the scope of
this paper.

GRID GENERATION METHOD

The present grid generation scheme was developed for an arbitrary three-dimensional
surface in space. The surface under consideration can be defined by intersecting hines, as
demonstrated by Figure 2. The points of intersection of these lines are the nodes used to
construct the triangular elements as outlined below.

Consider a node b generated from the intersection of the ith a line with the jth B line as
shown in Figure 2. This node is defined by its coordinates. For each node b (i), three addi-
tional neighboring points, ¢(i + 1j), e(i,j+ 1), and f(i+ 1.j+ 1), are generated in a similar man-
ner. Two planer triangles are constructed using these four adjacent nodes. Each triangle is
defined by the coordinates of its vertices. Using vector representation of the nodal points b, ¢,
and f, triangle 1 is defined by vectors u and v, while triangle 2 is described by vectors v and w
for a typical (i,j) node, as illustrated in Figure 3.

For the purpose of shape factor calculations, the terms in Equation 4 require, for cuch ele-
ment, the values of the area, location, and direction of its normal vector. The centroid of a
triangular area was chosen to represent its location in space.

The scheme described above is general and is applicable to any arbitrary surface. For a
given geometry, one must define the surface of interest in terms of its nodal points before
using this scheme. Some simple configurations were included herein for demonstration pur-
poses. The shape factors calculated using the present method were compared with tabulated
formulas for examples discussed in the following section. The objective of the present paper
is to test and demonstrate the grid generation method and, therefore, no attempt was made to
optimize the grid or to perform an error analysis. For visualization purposes. the generated
grids were plotted using the DISSPLA graphics system.

EXAMPLES

[n order to test the present scheme. comparisons with tabulated shape factors were made
for some example cases. In each case. the geometry for the area A was used to generate the
nodal points covering the surface under consideration. A general FTE grid generator using
this nodal information was used to calculate the geometric properties of the triangular cle-
ments. These properties were used to calculate the shape factor defined in Equation 4. The
following four configurations were considered to test the present scheme: (1) rectangular area
parallel to an element adjacent to one corner (Figure 3). (2) circular area parallel to an ele-
ment (Figure 4), (3) cylinder and an element parallel to its axis with its normal passing
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through one end (Figure 5), and (4) sphere and an element with its normal passing through
the center (Figure 6). These test configurations, chosen for their simplicity, do not imply any
limitation on the present scheme and were intended for vahidation only.

The results for Configuration | are summarized in Table [ for various values of A/C and
B/C (sce Figure 3). Table I also mcludes the exact results obtained from the closed form
solution reported by Hamilton and Morgan (reference 1) for comparison. All runs were made
for a grid size of 25 x 20. Thus, the total number of triangular elements generated was 1000
in each run. The results are in excellent agreement with the exact solution for this grid. In
general, the accuracy of the results depends on the grid size and the location of the element
relative to the finite area. The grid can be plotted using any three-dimensional plot system to
view the surface considered. Figure 7 is a computer-generated plot of the triangular elements
constructed for a rectangle with A/B = 2. The plot shown was produced by the DISSPLA
graphics system.

Table Il summarizes the results for Configuration 2 (Figure 4) for various values of R/C
and C/A. In this case, the nodal points were generated by choosing the a lines in the radial
direction and the B lines in the tangential direction. The center of the circle can be avoided
numerically by using a small concentric circle with a radius approaching zero. The results
were compared with the exact solution reported by Hamilton and Morgan (reference 1) for a
25 x 25 grid. Figure 8 shows the plotted geometry.

Configuration 3 is an example of a three-dimensional surface. The surface nodes were
generated from the intersection of the lines parallel to the cylinder axis (a lines) and circular
lines in the tangential direct (P lines). The results summarized in Table Il were obtained
using a 20 x 50 grid and were compared with the exact solution reported by Hamilton and
Morgan (reference 1). The grid is displayed in Figure 9 for A/R = 5.

The shape factor between a sphere and a differential clement has been treated extensively
in the literature, and formulas were derived for various cases involving the location and orien-
tation of the element relative to the sphere. These tormulas were summarized by Howell
(reference 2). Configuration 4 is the simplest case in which the normal to the element passes
through the center of the sphere. Table IV compares the results of the numerical calculations
with the exact solution tor various values of C/R and a 40 x 40 grid. Figure 10 is a DISSPLA
output of the spherical grid.

CONCLUSION

This paper demonstrates the use of a special grid generator for calculating thermal radia-
ton shape factors. The present method is based on tinite triangular elements which are used
to micgrate the shape tactor equation numericallv. It has the advantage of being applicable to
arbitrany thiee-dimensional surfaces without restricuons in addition to simplicity. Compari-
sons were made with tabulated results to validate the method.
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Table I. Results of Configuration 1

for Various Values of A/C and B/C

Table II. Results of Configuration 2
for Various Values of R/C and C/A

Table III. Results of Configuration 3
for Various Values of A/R and C/R

ve | BC | sorumon | mETHOD wC | CA | sotumion | METHOD
0.1 0.1 0.003141 0.003141 0.5 1 0.06588 0.06515
0.1 10 0.024865 0.024864 0.5 10 0.1975 0.1959
2 1 0.167375 0.167361 1 1 0.2764 0.2736
2 10 0.223400 0.223046 1 10 0.4975 0.4957
10 10 0.247971 0.246073 5 1 0.9585 0.9608

5 10 0.9615 0.9622

Table IV. Results of Configuration 4
for Various Values of C/R
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AR | CR | soitmiox | wiETHOD CR | sopumon | NUMERICAL
0.1 | s 0.003050 0.003046 L5 0.4444 0.4427

2 | s 0.053239 0.053162 2 0.2500 0.2490

2 | 10 | 0013430 0.013423 10 0.0100 0.00996

s | s 0.086983 0.086870 100 0.0001 0.0001

s | 10 | 0029211 0.029199

10 | 10 | 0042189 0.042174
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Figure 1. Geometric representation of shape factor hetween two differential elements.
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Figure 2. Illustration of FTE grid generation.
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CIRCULAR AREA
IN THE XY PLANE
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Figure 4. Geometry and coordinate system for Configuration 2.
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SPHERE OF RADIUS R

Figure 6. Geometry and coordinate system for Configuration 4.

157



-
4»"' -~
e L
~ . -~ ~
Y S Sy S S S S S T A LA Y S e

Figure 7. FTE grid for a rectangle (A'B = 2).

Figure 8. FTE grid for a circular area.

158



Iigure 9. FTE grid for a cylinder (A/R = 5).
Z

Figure 10. FTE grid for a sphere.
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